FLUXCOM-X monthly gross primary productivity on global 0.05 degree grid for 2002
11676/H6K2kBRyoxdxmc0FNrRoZ3Xs (link)
X-BASE GPP (Gross Primary Productivity) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The GPP estimates from the eddy covariance data was based on the Nighttime Partitioning method.
2002-01-01 12:00:00
2002-12-01 12:00:00
monthly
Gans, F., Duveiller, G., Hamdi, Z., Jung, M., Kraft, B., Nelson, J., Walther, S., Weber, U., Zhang, W. (2023). FLUXCOM-X monthly gross primary productivity on global 0.05 degree grid for 2002, Miscellaneous, https://hdl.handle.net/11676/H6K2kBRyoxdxmc0FNrRoZ3Xs
BibTex
@misc{https://hdl.handle.net/11676/H6K2kBRyoxdxmc0FNrRoZ3Xs, author={Gans, Fabian and Duveiller, Gregory and Hamdi, Zayd and Jung, Martin and Kraft, Basil and Nelson, Jacob A. and Walther, Sophia and Weber, Ulrich and Zhang, Weijie}, title={FLUXCOM-X monthly gross primary productivity on global 0.05 degree grid for 2002}, year={2023}, note={X-BASE GPP (Gross Primary Productivity) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The GPP estimates from the eddy covariance data was based on the Nighttime Partitioning method.}, keywords={BIOGEOCHEMICAL CYCLES, ECOSYSTEM FUNCTIONS, TERRESTRIAL ECOSYSTEMS, VEGETATION, CARBON, LAND SURFACE, FLUXCOM}, url={https://hdl.handle.net/11676/H6K2kBRyoxdxmc0FNrRoZ3Xs}, publisher={Carbon Portal}, copyright={http://meta.icos-cp.eu/ontologies/cpmeta/icosLicence}, pid={11676/H6K2kBRyoxdxmc0FNrRoZ3Xs} }
RIS
TY - DATA T1 - FLUXCOM-X monthly gross primary productivity on global 0.05 degree grid for 2002 ID - 11676/H6K2kBRyoxdxmc0FNrRoZ3Xs PY - 2023 AB - X-BASE GPP (Gross Primary Productivity) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The GPP estimates from the eddy covariance data was based on the Nighttime Partitioning method. UR - https://hdl.handle.net/11676/H6K2kBRyoxdxmc0FNrRoZ3Xs PB - Carbon Portal AU - Gans, Fabian AU - Duveiller, Gregory AU - Hamdi, Zayd AU - Jung, Martin AU - Kraft, Basil AU - Nelson, Jacob A. AU - Walther, Sophia AU - Weber, Ulrich AU - Zhang, Weijie KW - BIOGEOCHEMICAL CYCLES KW - ECOSYSTEM FUNCTIONS KW - TERRESTRIAL ECOSYSTEMS KW - VEGETATION KW - CARBON KW - LAND SURFACE KW - FLUXCOM ER -
GPP_2002_005_monthly.nc
420 MB (440770125 bytes)
3
Production
2023-06-21 00:00:00
Basil Kraft,
Gregory Duveiller,
Jacob A. Nelson,
Martin Jung,
Sophia Walther,
Ulrich Weber,
Weijie Zhang,
Zayd Hamdi
Previewable variables
Name | Value type | Unit | Quantity kind | Preview |
---|---|---|---|---|
GPP | gross primary productivity of carbon | gC m-2 d-1 | particle flux | Preview |
Statistics
0
0
Technical information
1fa2b6901472a3177199cd0536b4686775ec9f6d83df527cc153bd12c293e6b6
H6K2kBRyoxdxmc0FNrRoZ3Xsn22D31J8wVO9EsKT5rY
S: -90, W: -180, N: 90, E: 180
BIOGEOCHEMICAL CYCLES
CARBON
ECOSYSTEM FUNCTIONS
FLUXCOM
LAND SURFACE
TERRESTRIAL ECOSYSTEMS
VEGETATION
biosphere modeling
carbon flux