FLUXCOM-X daily transpiration on global 0.25 degree grid for 2014
11676/HPNV5gdLXGOyOzsV6OwxBIzM (link)
X-BASE ET_T (Transpiration) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The transpiration estimates from the eddy covariance data was based on the Transpiration Estimation Algorithm (TEA).
2014-01-01 12:00:00
2014-12-31 12:00:00
daily
Gans, F., Duveiller, G., Hamdi, Z., Jung, M., Kraft, B., Nelson, J., Walther, S., Weber, U., Zhang, W. (2023). FLUXCOM-X daily transpiration on global 0.25 degree grid for 2014, Miscellaneous, https://hdl.handle.net/11676/HPNV5gdLXGOyOzsV6OwxBIzM
BibTex
@misc{https://hdl.handle.net/11676/HPNV5gdLXGOyOzsV6OwxBIzM, author={Gans, Fabian and Duveiller, Gregory and Hamdi, Zayd and Jung, Martin and Kraft, Basil and Nelson, Jacob A. and Walther, Sophia and Weber, Ulrich and Zhang, Weijie}, title={FLUXCOM-X daily transpiration on global 0.25 degree grid for 2014}, year={2023}, note={X-BASE ET_T (Transpiration) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The transpiration estimates from the eddy covariance data was based on the Transpiration Estimation Algorithm (TEA).}, keywords={BIOGEOCHEMICAL CYCLES, ECOSYSTEM FUNCTIONS, TERRESTRIAL ECOSYSTEMS, VEGETATION, CARBON, LAND SURFACE, FLUXCOM}, url={https://hdl.handle.net/11676/HPNV5gdLXGOyOzsV6OwxBIzM}, publisher={Carbon Portal}, copyright={http://meta.icos-cp.eu/ontologies/cpmeta/icosLicence}, pid={11676/HPNV5gdLXGOyOzsV6OwxBIzM} }
RIS
TY - DATA T1 - FLUXCOM-X daily transpiration on global 0.25 degree grid for 2014 ID - 11676/HPNV5gdLXGOyOzsV6OwxBIzM PY - 2023 AB - X-BASE ET_T (Transpiration) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The transpiration estimates from the eddy covariance data was based on the Transpiration Estimation Algorithm (TEA). UR - https://hdl.handle.net/11676/HPNV5gdLXGOyOzsV6OwxBIzM PB - Carbon Portal AU - Gans, Fabian AU - Duveiller, Gregory AU - Hamdi, Zayd AU - Jung, Martin AU - Kraft, Basil AU - Nelson, Jacob A. AU - Walther, Sophia AU - Weber, Ulrich AU - Zhang, Weijie KW - BIOGEOCHEMICAL CYCLES KW - ECOSYSTEM FUNCTIONS KW - TERRESTRIAL ECOSYSTEMS KW - VEGETATION KW - CARBON KW - LAND SURFACE KW - FLUXCOM ER -
ET_T_2014_025_daily.nc
341 MB (357551302 bytes)
3
Production
2023-06-21 00:00:00
Basil Kraft,
Gregory Duveiller,
Jacob A. Nelson,
Martin Jung,
Sophia Walther,
Ulrich Weber,
Weijie Zhang,
Zayd Hamdi
Previewable variables
Name | Value type | Unit | Quantity kind | Preview |
---|---|---|---|---|
ET_T | transpiration | mm h-1 | particle flux | Preview |
Statistics
0
0
Technical information
1cf355e6074b5c63b23b3b15e8ec31048ccca2e1c61d9a1d57fde0b1053e2bbf
HPNV5gdLXGOyOzsV6OwxBIzMouHGHZodV/3gsQU+K78
S: -90, W: -180, N: 90, E: 180
BIOGEOCHEMICAL CYCLES
CARBON
ECOSYSTEM FUNCTIONS
FLUXCOM
LAND SURFACE
TERRESTRIAL ECOSYSTEMS
VEGETATION
biosphere modeling
carbon flux