FLUXCOM-X monthly transpiration on global 0.5 degree grid for 2018
Deprecated data
Latest version(s):
Sl7oxnS-6k8PvofniGrPm2el
11676/KRur8j0m4utAaTShwwPkU2B4 (link)
X-BASE ET_T (Transpiration) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The transpiration estimates from the eddy covariance data was based on the Transpiration Estimation Algorithm (TEA).
2018-01-01 12:00:00
2018-12-01 12:00:00
monthly
Gans, F., Duveiller, G., Hamdi, Z., Jung, M., Kraft, B., Nelson, J., Walther, S., Weber, U., Zhang, W. (2023). FLUXCOM-X monthly transpiration on global 0.5 degree grid for 2018, Miscellaneous, https://hdl.handle.net/11676/KRur8j0m4utAaTShwwPkU2B4
BibTex
@misc{https://hdl.handle.net/11676/KRur8j0m4utAaTShwwPkU2B4, author={Gans, Fabian and Duveiller, Gregory and Hamdi, Zayd and Jung, Martin and Kraft, Basil and Nelson, Jacob A. and Walther, Sophia and Weber, Ulrich and Zhang, Weijie}, title={FLUXCOM-X monthly transpiration on global 0.5 degree grid for 2018}, year={2023}, note={X-BASE ET_T (Transpiration) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The transpiration estimates from the eddy covariance data was based on the Transpiration Estimation Algorithm (TEA).}, keywords={BIOGEOCHEMICAL CYCLES, ECOSYSTEM FUNCTIONS, TERRESTRIAL ECOSYSTEMS, VEGETATION, CARBON, LAND SURFACE, FLUXCOM}, url={https://hdl.handle.net/11676/KRur8j0m4utAaTShwwPkU2B4}, publisher={Carbon Portal}, copyright={http://meta.icos-cp.eu/ontologies/cpmeta/icosLicence}, pid={11676/KRur8j0m4utAaTShwwPkU2B4} }
RIS
TY - DATA T1 - FLUXCOM-X monthly transpiration on global 0.5 degree grid for 2018 ID - 11676/KRur8j0m4utAaTShwwPkU2B4 PY - 2023 AB - X-BASE ET_T (Transpiration) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The transpiration estimates from the eddy covariance data was based on the Transpiration Estimation Algorithm (TEA). UR - https://hdl.handle.net/11676/KRur8j0m4utAaTShwwPkU2B4 PB - Carbon Portal AU - Gans, Fabian AU - Duveiller, Gregory AU - Hamdi, Zayd AU - Jung, Martin AU - Kraft, Basil AU - Nelson, Jacob A. AU - Walther, Sophia AU - Weber, Ulrich AU - Zhang, Weijie KW - BIOGEOCHEMICAL CYCLES KW - ECOSYSTEM FUNCTIONS KW - TERRESTRIAL ECOSYSTEMS KW - VEGETATION KW - CARBON KW - LAND SURFACE KW - FLUXCOM ER -
ET_T_2018_monthly_halfdeg.nc
5 MB (5015073 bytes)
3
Production
2023-06-21 00:00:00
Gregory Duveiller,
Zayd Hamdi,
Martin Jung,
Basil Kraft,
Jacob A. Nelson,
Sophia Walther,
Ulrich Weber,
Weijie Zhang
Previewable variables
Name | Value type | Unit | Quantity kind | Preview |
---|---|---|---|---|
ET_T | transpiration | mm h-1 | particle flux | Preview |
Statistics
0
0
Technical information
291babf23d26e2eb406934a1c303e4536078a1555cbbf60710b2a77f276f027b
KRur8j0m4utAaTShwwPkU2B4oVVcu/YHELKnfydvAns
S: -90, W: -180, N: 90, E: 180
BIOGEOCHEMICAL CYCLES
CARBON
ECOSYSTEM FUNCTIONS
FLUXCOM
LAND SURFACE
TERRESTRIAL ECOSYSTEMS
VEGETATION
biosphere modeling
carbon flux