X-BASE ET_T is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The GPP estimates from the eddy covariance data was based on the Nighttime Partitioning method.
Published paper: https://egusphere.copernicus.org/preprints/2024/egusphere-2024-165/
Fetching... try [refreshing the page] again in a few seconds
TY - DATA T1 - FLUXCOM-X-BASE AU - Nelson, Jacob A. AU - Walther, Sophia AU - Jung, Martin AU - Gans, Fabian AU - Kraft, Basil AU - Weber, Ulrich AU - Hamdi, Zayd AU - Duveiller, Gregory AU - Zhang, Weijie DO - 10.18160/5NZG-JMJE UR - https://meta.icos-cp.eu/collections/zfwf1Ak2I7OlziGDTX8Xl6_T AB - The X-BASE products are global fluxes based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce these global products. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorological data, plant functional type classification as well as MODIS based vegetation indices and land surface temperature. XGBoost was used as the machine learning algorithm. Published paper: Nelson, J. A., Walther, S., Gans, F., Kraft, B., Weber, U., Novick, K., Buchmann, N., Migliavacca, M., Wohlfahrt, G., Šigut, L., Ibrom, A., Papale, D., Göckede, M., Duveiller, G., Knohl, A., Hörtnagl, L., Scott, R. L., Zhang, W., Hamdi, Z. M., Reichstein, M., Aranda-Barranco, S., Ardö, J., Op de Beeck, M., Billesbach, D., Bowling, D., Bracho, R., Brümmer, C., Camps-Valls, G., Chen, S., Cleverly, J. R., Desai, A., Dong, G., El-Madany, T. S., Euskirchen, E. S., Feigenwinter, I., Galvagno, M., Gerosa, G. A., Gielen, B., Goded, I., Goslee, S., Gough, C. M., Heinesch, B., Ichii, K., Jackowicz-Korczynski, M. A., Klosterhalfen, A., Knox, S., Kobayashi, H., Kohonen, K.-M., Korkiakoski, M., Mammarella, I., Gharun, M., Marzuoli, R., Matamala, R., Metzger, S., Montagnani, L., Nicolini, G., O'Halloran, T., Ourcival, J.-M., Peichl, M., Pendall, E., Ruiz Reverter, B., Roland, M., Sabbatini, S., Sachs, T., Schmidt, M., Schwalm, C. R., Shekhar, A., Silberstein, R., Silveira, M. L., Spano, D., Tagesson, T., Tramontana, G., Trotta, C., Turco, F., Vesala, T., Vincke, C., Vitale, D., Vivoni, E. R., Wang, Y., Woodgate, W., Yepez, E. A., Zhang, J., Zona, D., and Jung, M.: X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X, Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, 2024. KW - BIOGEOCHEMICAL CYCLES KW - CARBON KW - ECOSYSTEM FUNCTIONS KW - FLUXCOM KW - LAND SURFACE KW - TERRESTRIAL ECOSYSTEMS KW - VEGETATION KW - biosphere modeling KW - carbon flux KW - FLUXCOM-X PY - 2023 PB - ICOS ERIC -- Carbon Portal ER -
Name | Value type | Unit | Quantity kind | Preview |
---|---|---|---|---|
ET_T | transpiration | mm h-1 | particle flux | Preview |