FLUXCOM-X daily transpiration on global 0.25 degree grid for 2010
Deprecated data
Latest version(s):
81tf_3buETJWwFwRsGgzzaRQ
11676/QoNwI-p-ilAI_upN7UR22oGr (link)
X-BASE ET_T (Transpiration) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The transpiration estimates from the eddy covariance data was based on the Transpiration Estimation Algorithm (TEA).
2010-01-01 12:00:00
2010-12-31 12:00:00
daily
Gans, F., Duveiller, G., Hamdi, Z., Jung, M., Kraft, B., Nelson, J., Walther, S., Weber, U., Zhang, W. (2023). FLUXCOM-X daily transpiration on global 0.25 degree grid for 2010, Miscellaneous, https://hdl.handle.net/11676/QoNwI-p-ilAI_upN7UR22oGr
BibTex
@misc{https://hdl.handle.net/11676/QoNwI-p-ilAI_upN7UR22oGr, author={Gans, Fabian and Duveiller, Gregory and Hamdi, Zayd and Jung, Martin and Kraft, Basil and Nelson, Jacob A. and Walther, Sophia and Weber, Ulrich and Zhang, Weijie}, title={FLUXCOM-X daily transpiration on global 0.25 degree grid for 2010}, year={2023}, note={X-BASE ET_T (Transpiration) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The transpiration estimates from the eddy covariance data was based on the Transpiration Estimation Algorithm (TEA).}, keywords={BIOGEOCHEMICAL CYCLES, ECOSYSTEM FUNCTIONS, TERRESTRIAL ECOSYSTEMS, VEGETATION, CARBON, LAND SURFACE, FLUXCOM}, url={https://hdl.handle.net/11676/QoNwI-p-ilAI_upN7UR22oGr}, publisher={Carbon Portal}, copyright={http://meta.icos-cp.eu/ontologies/cpmeta/icosLicence}, pid={11676/QoNwI-p-ilAI_upN7UR22oGr} }
RIS
TY - DATA T1 - FLUXCOM-X daily transpiration on global 0.25 degree grid for 2010 ID - 11676/QoNwI-p-ilAI_upN7UR22oGr PY - 2023 AB - X-BASE ET_T (Transpiration) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The transpiration estimates from the eddy covariance data was based on the Transpiration Estimation Algorithm (TEA). UR - https://hdl.handle.net/11676/QoNwI-p-ilAI_upN7UR22oGr PB - Carbon Portal AU - Gans, Fabian AU - Duveiller, Gregory AU - Hamdi, Zayd AU - Jung, Martin AU - Kraft, Basil AU - Nelson, Jacob A. AU - Walther, Sophia AU - Weber, Ulrich AU - Zhang, Weijie KW - BIOGEOCHEMICAL CYCLES KW - ECOSYSTEM FUNCTIONS KW - TERRESTRIAL ECOSYSTEMS KW - VEGETATION KW - CARBON KW - LAND SURFACE KW - FLUXCOM ER -
ET_T_2010_025_daily.nc
349 MB (365918086 bytes)
3
Production
2023-06-21 00:00:00
Gregory Duveiller,
Zayd Hamdi,
Martin Jung,
Basil Kraft,
Jacob A. Nelson,
Sophia Walther,
Ulrich Weber,
Weijie Zhang
Previewable variables
Name | Value type | Unit | Quantity kind | Preview |
---|---|---|---|---|
ET_T | transpiration | mm h-1 | particle flux | Preview |
Statistics
0
0
Technical information
42837023ea7e8a5008feea4ded4476da81ab42feff210c62d335dcdc8f6b8b84
QoNwI+p+ilAI/upN7UR22oGrQv7/IQxi0zXc3I9ri4Q
S: -90, W: -180, N: 90, E: 180
BIOGEOCHEMICAL CYCLES
CARBON
ECOSYSTEM FUNCTIONS
FLUXCOM
LAND SURFACE
TERRESTRIAL ECOSYSTEMS
VEGETATION
biosphere modeling
carbon flux