ICOS

FLUXCOM-X monthly gross primary productivity on global 0.05 degree grid for 2020

Download

Deprecated data

Latest version(s): O4Q7WT40CPKy7H8aON7oli5S
11676/nL7GbNKuHie8T7hT6T8kXYlB (link)

X-BASE GPP (Gross Primary Productivity) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The GPP estimates from the eddy covariance data was based on the Nighttime Partitioning method.

2020-01-01 12:00:00
2020-12-01 12:00:00
monthly
Gans, F., Duveiller, G., Hamdi, Z., Jung, M., Kraft, B., Nelson, J., Walther, S., Weber, U., Zhang, W. (2023). FLUXCOM-X monthly gross primary productivity on global 0.05 degree grid for 2020, Miscellaneous, https://hdl.handle.net/11676/nL7GbNKuHie8T7hT6T8kXYlB
BibTex
@misc{https://hdl.handle.net/11676/nL7GbNKuHie8T7hT6T8kXYlB,
  author={Gans, Fabian and Duveiller, Gregory and Hamdi, Zayd and Jung, Martin and Kraft, Basil and Nelson, Jacob A. and Walther, Sophia and Weber, Ulrich and Zhang, Weijie},
  title={FLUXCOM-X monthly gross primary productivity on global 0.05 degree grid for 2020},
  year={2023},
  note={X-BASE GPP (Gross Primary Productivity) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The GPP estimates from the eddy covariance data was based on the Nighttime Partitioning method.},
  keywords={BIOGEOCHEMICAL CYCLES, ECOSYSTEM FUNCTIONS, TERRESTRIAL ECOSYSTEMS, VEGETATION, CARBON, LAND SURFACE, FLUXCOM},
  url={https://hdl.handle.net/11676/nL7GbNKuHie8T7hT6T8kXYlB},
  publisher={Carbon Portal},
  copyright={http://meta.icos-cp.eu/ontologies/cpmeta/icosLicence},
  pid={11676/nL7GbNKuHie8T7hT6T8kXYlB}
}
RIS
TY - DATA
T1 - FLUXCOM-X monthly gross primary productivity on global 0.05 degree grid for 2020
ID - 11676/nL7GbNKuHie8T7hT6T8kXYlB
PY - 2023
AB - X-BASE GPP (Gross Primary Productivity) is based on the FLUXCOM-X framework which trains machine learning models on in-situ eddy covariance data and uses them to produce this global product. The X-BASE experiment is a basic configuration to serve as a baseline for the FLUXCOM-X framework and includes as predictors the core meteorlogical data, plant functional type classification as well as MODIS based vegitation indicies and land surface temperature. XGBoost was used as the machine learning algorithm. The GPP estimates from the eddy covariance data was based on the Nighttime Partitioning method.
UR - https://hdl.handle.net/11676/nL7GbNKuHie8T7hT6T8kXYlB
PB - Carbon Portal
AU - Gans, Fabian
AU - Duveiller, Gregory
AU - Hamdi, Zayd
AU - Jung, Martin
AU - Kraft, Basil
AU - Nelson, Jacob A.
AU - Walther, Sophia
AU - Weber, Ulrich
AU - Zhang, Weijie
KW - BIOGEOCHEMICAL CYCLES
KW - ECOSYSTEM FUNCTIONS
KW - TERRESTRIAL ECOSYSTEMS
KW - VEGETATION
KW - CARBON
KW - LAND SURFACE
KW - FLUXCOM
ER - 
GPP_2020_005_monthly.nc
421 MB (441129525 bytes)
3

Production

2023-06-21 00:00:00

Previewable variables

Name Value type Unit Quantity kind Preview
GPP gross primary productivity of carbon gC m-2 d-1 particle flux Preview

Statistics

3
0

Submission

2023-07-25 11:31:39
2023-07-25 11:19:02

Technical information

9cbec66cd2ae1e27bc4fb853e93f245d8941140862e1f2900212874ec85ad24b
nL7GbNKuHie8T7hT6T8kXYlBFAhi4fKQAhKHTsha0ks
S: -90, W: -180, N: 90, E: 180
BIOGEOCHEMICAL CYCLES CARBON ECOSYSTEM FUNCTIONS FLUXCOM LAND SURFACE TERRESTRIAL ECOSYSTEMS VEGETATION biosphere modeling carbon flux